A Cost Effective Assessment of Aganwadi Building through Value Engineering Methodology

Ankitkumar S. Patel¹, Prof. Jaydev J. Bhavsar², Prof. Jayeshkumar Pitroda²

 ¹ Final Year Student, M.E., Dept. of Construction Engineering & Management, B.V.M. Engineering College, Vallabh Vidhyanagar, Gujarat, India, purveshraval24@gmail.com
 ² Associate Professor & PG Coordinator, Dept. of Civil Engineering, B.V.M Engineering College, Vallabh Vidyanagar, Gujarat, India, jjbhavsar@bvmengineering.ac.in
 ³ Assistant Professor & Research Scholar, Dept. of Civil Engineering, B.V.M Engineering College,

Vallabh Vidyanagar, Gujarat, India, jayesh.pitroda@bvmengineering.ac.in

Abstract— Saving money and, at the same time, providing better value is a concept that everyone support. The benefits of spreading our investment rupees, building more for less money, increasing efficiency and cutting down our dependency on energy-intensive building and plant facilities need to be recognized today and pursued in the future.

Government agencies commonly funding the Construction projects that improve our Infrastructure system, Transportation system, Educational system and many other Government buildings which fulfil the basic needs of the society by spending millions of money. So systematic study of this projects are required as it leads to reduction in the overall cost and saving the money of the Government that can be utilized for the betterment of other works in state as well as in the nation. This can be effectively achieved with the use of Value engineering theories and methods in the relevant construction projects. Value engineering is an organized, creative, cost search technique for analyzing the function of a product, service, or system with the purpose of achieving the required functions at the lowest possible overall cost consistent with all the requirements that comprise its value, such as performance, quality, reliability, and appearance.

Keywords- Value Engineering, VE Job Plan, Decision Matrix, Functional Analysis, Cost Effectiveness, Creativity, Quality, Performance

I. INTRODUCTION

In current era, there is a great need for assessment of the existing approaches of construction of Government projects which involves millions of money spent every year. Value Engineering concepts is the best solution, which can provide cost effective solution.

Government agencies commonly funding the Construction projects that improve our Infrastructure system, Transportation system, Educational system and many other Government buildings which fulfil the basic needs of the society by spending millions of money.

So systematic study of this projects are required as it leads to reduction in the overall cost and saving the money of the Government that can be utilized for the betterment of other works in state as well as in the nation. This can be effectively achieved with the use of Value engineering theories and methods in the relevant construction projects.

Hence in this research study, Aganwadi Building" is to be studied systematically in all respect i.e. design, materials used, to improve function served by each that leads to reduction in overall cost and its feasibility study is to be carried out. The cost of each Aganwadi building is 5, 50,000/- Rs. Annual budget of last two financial years for the construction of Aganwadi building is graphically represented in Table -1.

Sr No	Financial Year	Budget (in crore)
1.	2011-2012	100.00
2.	2012-2013	511.91

Table – 1	:	Year	wise	Budget
-----------	---	------	------	--------

II. VE Job Plan

1. INFORMATION PHASE – COST MODEL

Objective : To Secure all and Complete Information.

To gather Facts from the best sources.

To ensure accuracy of Information, Check, Recheck & update all data.

Project: Construction of Aganwadi Building

Sr. No.	Description	Percentage of Total	Cost
1.	Excavation & Filling	1.10	6059.16
2.	P.C.C Work	5.68	31242.33
3.	Brick Work	29.54	162489.83
4.	R.C.C Work	18.14	99768.24
5.	Plaster Work	6.67	36707.44
6.	Flooring Work	8.64	47493.66
7.	Colour Work	1.67	9163.73
8.	China Mosaic Work	6.17	33908.73
9.	Door/Window Work	9.82	54010.8
10.	Plumbing Work	8.79	48351.69
11.	Electrical Work	2.45	13500
12.	Material Testing Work	1.33	7300
	Total	100.00	5,50,000.00

Table- 2 Information Phase: Cost Model

COST MODEL CHART

Fig. 1 Item wise Contribution (in %)

2. FUNCTIONAL ANALYSIS

Objective :	To identify	Function (s).
J		

Excavation/Filling	P.C.C Work
Rs.6059.16	Rs.31242.33
Prepare Site	Transfer Load
1.10%	5.68%

Brick Work	R.C.C Work
Rs.162489.83	Rs.99768.24
Distributes Load	Distributes Load
29.54%	18.14%

Plaster Work	Flooring Work
Rs.36707.44	Rs.47493.66
Smoothens Surface	Facilitates Level Surface
6.67%	8.64%

Colour Work	China Mosaic
Rs.9163.73	Rs.33908.73
Protects Surface	Reduces Heat Effect
1.67%	6.17%

Door/Window	Plumbing Work
Rs.54010.8	Rs.48351.69
Facilitates Ventilation & Barrier to Entry	Convcy Water/Waste Water
9.82%	8.79%

Electrical Work	Material Testing
Rs.13500.00	Rs.7300.00
Prevent Darkness	Ensures Quality
2.45%	1.33%

3. CREATIVE PHASE – IDEA LISTING

Objective : To generate alternative method/material for providing the Function and/or item, through creative thinking, brainstorming and even speculation.

CREATIVE IDEA	ADVANTAGE	DISADVANTAGE
Brick Work		
1. Frame Structure	More Strength	Costly
2. Using Hollow	Relatively Low Cost	Not easily available
Concrete Blocks		
3. Using AAC	Reduce Overall Cost	Not easily available
Blocks		
4. Using Fly ash	Cheaper	Lack of Awareness
Bricks		
5. Using Dry	Faster Construction	Automation needed
wall(Non Load		& overall costly
baring)		
R.C.C Slab		T 1 1 11 1
1. Using Roof Truss	Relatively Low Cost	Low adaptability &
		Less temperature
2 Using Mire	Lessen Material Hand	resistance
2. Using Mix	Lesser Material Used	Resistance at end
Design Concrete		User
	Dalativaly Low Cost	I our other ath
1. Using D.D.C.C Work	Relatively Low Cost	Low strength
Door and Window		
1 Using Wooden	Better Appearance	High Cost
Door and	Detter Appearance	ingii cost
Window		
2. Using PVC Door	Relatively Low Cost	Resistance at User
3. Using Aluminum	Better Ventilation &	Costly
Section Window	Lighting	,
Non Return Metal		
Wheel Valve		
1. Using Half	Relatively Low Cost,	
(Patti) Valve	Easy to use	
(Brass)		
Ball Cock Copper		
Metal		
1. Using PVC Ball	Relatively Low Cost	
Cock		
Mild Steel Tubes(Pipes)		
I. Using	Easy to use, Relatively	
PVC/CPVC	Low Cost, No	
Pipes	Corrosion	

 Table - 3 Creative Phase – Idea Listing

4. EVALUATION PHASE

In Evaluation phase ranking of the ideas are done using decision matrix.

It is done by assigning relative weights to each criterion and then deriving an overall measure of effectiveness.

It can be done using a five point scale and making paired comparison of all ideas. The idea with the final weighted score is selected.

POINT SCALE: Excellent = 5 Very Good = 4 Good = 3 Fair = 2 Poor = 1

Identity	Crite ria	Weightage
Α	Availability	8
В	Initial Cost	9
С	Maintainability	7
D	Aesthetic	6
Ε	Durability	9
F	Ease of handling	6
G	Performance	9

 Table – 4 Criteria Weightage for Evaluation

1. BRICK WORK:

 Table – 5 Decision Matrix for Brick Work

CRITERIA FOR EVALUTION	Availability	Initial Cost	Maintainability	Aesthetic	Durability	Ease of handling	Performance	T O T A L
FACTOR	А	В	С	D	E	F	G	
WEIGHTAGE	8	9	7	6	9	6	9	
Frame Structure	4	3	4	3	4	2	4	189
	32	27	28	18	36	12	36	
Using Fly Ash Bricks	4	5	4	3	4	4	4	219
	32	45	28	18	36	24	36	
Using AAC Blocks	2	3	4	3	4	4	4	185
	16	27	28	18	36	24	36	

POINT SCALE: Excellent = 5 Very Good = 4 Good = 3 Fair = 2 Poor = 1

Tuble 0 Dee						IN/ I WI	uiuio ii	· · · un
CRITERIA FOR EVALUTION	Availability	Initial Cost	Maintainability	Aesthetic	Durability	Ease of handling	Performance	T O T A L
FACTOR	Α	В	С	D	E	F	G	
WEIGHTAGE	8	9	7	6	9	6	9	
Using Hollow Concrete	2	4	4	3	4	5	4	200
blocks	16	36	28	18	36	30	36	
Using Dry Wall	2	4	3	4	4	3	4	187
	16	36	21	24	36	18	36	

Table - 6 Decision Matrix for Brick Work/Partition Wall

2. DOOR AND WINDOW WORK:

Table - 7 Decision Matrix for Door

CRITERIA FOR EVALUTION	Availability	Initial Cost	Maintainability	Aesthetic	Durability	Ease of handling	Performance	T O T A L
FACTOR	А	В	С	D	E	F	G	
WEIGHTAGE	8	9	7	6	9	6	9	
Using Wooden Door	4	2	3	3	4	4	4	185
	32	18	21	18	36	24	36	
Using PVC Door	4	5	5	4	4	4	4	232
	32	45	35	24	36	24	36	

3. PLUMBING WORK:

Table - 8 Decision Matrix for Non Return Valve

CRITERIA FOR EVALUTION	Availability	Initial Cost	Maintainability	Aesthetic	Durability	Ease of handling	Performance	T O T A L
FACTOR	Α	В	С	D	Е	F	G	
WEIGHTAGE	8	9	7	6	9	6	9	
Using Metal Wheel	4	3	3	3	4	3	4	188
Valve	32	27	21	18	36	18	36	
Using Brass Half valve	4	5	4	3	4	4	4	219

POINT SCALE:	Excellent $= 5$	Very Good = 4	Good = 3	Fair = 2	Poor = 1
	Table – 9	Decision Matrix	for Ball C	ock	

= •••••=								
CRITERIA FOR EVALUTION	Availability	Initial Cost	Maintainability	Aesthetic	Durability	Ease of handling	Performance	T O T A L
FACTOR	А	В	С	D	Е	F	G	
WEIGHTAGE	8	9	7	6	9	6	9	
Using Copper Ball Cock	4	3	3	3	4	4	4	194
	32	27	21	18	36	24	36	
Using PVC Ball Cock	4	5	4	4	5	3	4	228
	32	45	28	24	45	18	36	

Table – 10 Decision Matrix for Pipes

CRITERIA FOR EVALUTION	Availability	Initial Cost	Maintainability	Aesthetic	Durability	Ease of handling	Performance	T O T A L
FACTOR	Α	В	С	D	Е	F	G	
WEIGHTAGE	8	9	7	6	9	6	9	
Using Mild Steel Pipes	4	3	3	3	4	4	4	194
	32	27	21	18	36	24	36	
Using CPVC Pipes	4	5	4	4	4	5	4	231
	32	45	28	24	36	30	36	

POINT SCALE: Excellent = 5 Very Good = 4 Good = 3 Fair = 2 Poor = 1

5. DEVELOPMENT PHASE – IDEA RANKING

Objective : To Select/Rank the best alternative idea for further development.

Table – 11 Evaluation Phase – Idea Kanking							
CREATIVE IDEA	ADVANTAGE	DISADVANTAGE	RANK				
Brick Work							
1. Frame Structure	More Strength	Costly	2				
2. Using Hollow Concrete	Relatively Low	Not easily available	4				
Blocks	Cost						
3. Using AAC Blocks	Reduce Overall	Not easily available	3				
	Cost						
4. Using Fly ash Bricks	Relatively Low	Lack of Awareness	1				

Table – 11 Evaluation Phase – Idea Ranking

	Cost		
5. Using Dry wall(Non Load	Faster Construction	Automation needed	5
baring)		& overall costly	
CREATIVE IDEA	ADVANTAGE	DISADVANTAGE	RANK
Door and Window			
1. Using Wooden Door and	No Corrosion,	High Cost	2
Window	Better Appearance		
2. Using PVC Door	Relatively Low	Resistance at User	1
	Cost		
Non Return Metal Wheel Valve			
1. Using Half (Patti) Valve	Relatively Low		1
(Brass)	Cost, Easy to use		
Ball Cock Copper Metal			
1. Using PVC Ball Cock	Relatively Low		1
	Cost		
Mild Steel Tubes(Pipes)			
1. Using PVC/CPVC Pipes	Easy to use,		1
	Relatively Low		
	Cost, No Corrosion		

6. DEVELOPMENT PHASE

Objective : To prepare Value Engineering change proposal.

To Record the benefits and savings.

Project: Construction of Various Aganwadi Building

Table – 12 Development Phase – Brick Work

Original Concept:

Brick work using common burnt clay building brick having crushing strength not less than 35 kg/sq. cm. in foundation and plinth in cement mortar 1:6 (1 Cement : 6 fine sand) (B) Conventional

Proposed Change:

Brick work using common burnt clay building brick having crushing strength not less than 35 kg/sq. cm. in foundation and plinth in cement mortar 1:6 (1 Cement : 6 fine sand) (B) Fly ash brick

Discussion: Reduction in the material cost of this proposal is a definite advantage.

COST SUMMARY					
Original Cost	Rs.162490.00				
Proposed Cost	Rs.138700.00				
Total Saving	Rs.23790.00				

Table – 13 Cost Summary– Brick Work

Table - 14 Development Phase - Door and Window

Providing and fixing M.S.Doors and windows using frame of
M.S.Angle 40 mm x 40 mm x 6 mm and sheet of 18 - B.S.Gauge
including necessary fixtures and fastenings with primer coat of red
lead paint and three coats of oil paints etc. Complete.

Proposed Change:

Original Concept:

Providing and fixing Doors using PVC Door necessary fixtures and fastenings etc. Complete.

Discussion:

Reduction in the material cost of this proposal is a definite advantage.

Effective weight reduction is achieved.

Easy in handling and no corrosion problem.

No need of colour coating so saving in time.

Table – 15 Cost Summary- Door and Window

COST SUMMARY					
Original Cost	Rs.7458.00				
Proposed Cost	Rs.4560.00				
Total Saving	Rs.2898.00				

Table – To Development Thase -Non-Neturn valve	Table –	16	Devel	opment	Phase	-Non-	Return	Valve
--	---------	----	-------	--------	-------	-------	--------	-------

Original Concept: Providing and fixing gun metal check or non-return full way wheel valve.	
Providing and fixing non-return half valve (Patti Valve) – Brass valve.	A REAL PROPERTY OF
Discussion: Reduction in the cost of this proposal is a definite advantage. No Corrosion problem. Easy in handling.	

Table – 17 Cost Summary- Non-Return Valve

COST SUMMARY		
Original Cost	Rs.910.00	
Proposed Cost	Rs.370.00	
Total Saving	Rs.540.00	

Table - 18 Development Phase - Ball Cock

Original Concept:

Providing and fixing ball cock of approved quality as directed. (A) Copper Metal

 Table – 19 Cost Summary - Ball Cock

COST SU	MMARY
Original Cost	Rs.485.00
Proposed Cost	Rs.90.00
Total Saving	Rs.395.00

Table - 20 Development Phase - Pipes

Table – 21 Cost Summary – Pipes

COST SUMMARY

Original Cost	Rs.3191.00
Proposed Cost	Rs.1180.00
Total Saving	Rs.2011.00

III COST COMPARISION

Cost Comparison before & after applying VE in Rs.

Cost Comparison before & after applying VE in %

COST COMPARISON CHART IN %

Value Engineering is recognized as an effective way to improve the performance of a project and reduce unnecessary capital and operating costs. It is more effective and influential on the performance, quality, and cost of a project when done relatively early in the project schedule. It encourages creativity in the organization and provide cost effective solution for the project without compromising its quality, cost, performance.

Value Engineering Job Plan and Functional Analysis methods were employed for entire study for effective cost reduction of Aganwadi Building. This study shows how the VE is used for the cost reduction of construction of Aganwadi Building without the change in the product design & its value. An appropriate decision matrix is prepared for choosing the appropriate alternative from the feasible choices available and following conclusions are drawn:

- The total cost of proposed value engineering proposal can be reduced from Rs. 5,50,000/- to Rs. 5,04,000/- Comparing this with existing Aganwadi estimates, we achieved the cost saving of Rs.46000/-, which is about 8 % reduction in overall cost for each Aganwadi unit.
- With the use of value engineering:
 - Effective reduction in use of agriculture land as it suggest to use Fly Ash Bricks instead of clay Bricks.
 - No corrosion problem as CPVC pipes are suggested instead of M.S. Pipes by VE team. Also reduction in weight and easy in handling/jointing is value added advantage of this proposal.

The Authors thankfully acknowledge to Dr. C. L. Patel, Chairman, Charutar Vidya Mandal, Er. V.M.Patel, Hon. Jt. Secretary, Charutar Vidya Mandal, Dr. F. S. Umrigar, Principal, , Dr. L. B. Zala, Head of Civil Engineering Department, Prof. J. J. Bhavsar, Associate Professor and PG (Construction Engineering and Management) Coordinator, B.V.M. Engineering College, Vallabh Vidyanagar, Gujarat, India for their motivations and infrastructural support to carry out this research.

REFERENCES

- Bytheway Jay, "Finding Hidden Functions in Fast Diagrams Using Reverse How", Value World The Journal Of Save International Volume 35, No 2, Fall 2012
- [2] Charles Anthony Mitchell, "Developing a Standard Approach to the Value Engineering Process for the Civil Engineering Industry : A Theoretical, Case Study And Industry Perspective", CEEC General Assembly Brussels 25-27 April 2013
- [3] Connaughton, J. N. & Green, S. D. 1996: Value management in construction: a client's guide, Construction Industry Research and Information Association
- [4] Cooper, R. and Slagmulder, R., Target Costing and Value Engineering Productivity Press, Portland, OR, USA (1997)
- [5] Dell'isola, A. J. 1997: Value engineering: practical applications --for design, construction, maintenance & operations, Kingston, Mass., R. S. Means.
- [6] Geza E. Kmetty, "What Makes Value Methodology Work? (An Analysis of Function Analysis)", Value World The Journal Of Save International Volume 35, No 2, Fall 2012
- [7] Green Stuart D, (1993) "Value Engineering During Early Design", Facilities, Vol. 9 Iss: 9, pp. 10 13
- [8] Sharma Amit, Srivastava Harshit, Belokar R M, "A Case Study Analysis Through the Implementation of Value Engineering" International Journal of Engineering Science and Technology (IJEST) Volume 3, No 3, 2011
- [9] Jariri F. & Zegordi S.H Quality Function Deployment, Value Engineering and Target Costing, an Integrated Framework in Design Cost Management: A Mathematical Programming Approach, Scientia Iranica, Vol. 15, No. 3, pp 405-411 Sharif University of Technology, June 2008
- [10] Kumari Anupama, "Creating Business Sustainability With Value engineering as a TOOL", Value World The Journal Of Save International Volume 35, No 1, Spring 2012
- [11] Kallurkar S.P, Chougule M.A, and Nemade P.N., "Value Addition of Computer Work Station Manufactured in Furniture Industry by Using Value Engineering Concept", International Journal of Engineering Trends and Technology (IJETT) – Volume 4, Issue7- July 2013
- [12] Lawrence D. Miles. Techniques of Value Analysis and Engineering, New York, Mcgraw-Hill, June
- [13] Melvin R. Candelario, "Quantifiable Quality in Value Improvement", Value World The Journal Of Save International Volume 35, No 1, Spring 2012
- [14] Renee V.Dorjahn The Use of Target Cost Techniques to Achieve Market Dominance with New Technology
- [15] Value Engineering Manual, West Virginia Department Of Transportation Division Of Highways Engineering Division, January 1, 2004

BOOKS

- [16] Larry W. Zimmerman, Glen D. Hart Value Engineering-A Practical Approach for Owners, Designers and Contractors, CBS Publishers & Distributers Pvt. Ltd, New Delhi.
- [17] S.S.IYER Value Engineering-A How To Manual, New Age International Publishers.

WEB-SITES

- [18] Canadian Society of Value Analysis : http://www.csva.com
- [19] Indian Value Engineering Society : http://www.invest-in.org/
- [20] Society of American Value Engineers: www.valueeng.org/education_publications_value_world.php#announcement
- [21] Society of Japanese Value Engineering (SJVE) : http://www.sjve